Leathers for Niche Segment

Abhinandan Kumar Senior Scientist, Tannery Division, CSIR-CLRI

Leather Process Tech Division

- Playing pivotal role in the development of Tanning Industry in the country by providing trained manpower and development and supply of appropriate technologies
- Instrumental in developing cleaner processing options including chrome management measures and recycling schemes for in-process control of pollution and for achieving zero waste water discharge
- Spearheading efforts in the transformation of leather making from chemical intensive processing to bioprocessing

Proven Technologies Available from Tannery Division

- Salt Free and Low Salt Preservation
- Cleaner Pretanning operations
- Cleaner Tanning Options
- Process modifications to improve productivity
- Value Engineering Research For Leather

Children Footwear

- Children's footwear one of the fastest growing segments and holds share of nearly 11%
- Globally it is expected to grow at a CAGR of 3.7% owing to high demand of comfortable and designer footwear for children
- Shoes need to be made from breathable materials, such as leather
- Leather In addition to being more durable, they will help to keep the child's foot cooler and dryer, helping to prevent blisters, and discomfort
- Uncomfortable footwear- restricts the free movements, changing of walking pattern

Strategies adopted

Cleaner pretanning – employing enzymes for avoiding toxic chemicals like sulphide

TTT

- Less chrome or chrome free tanning systems
- Modified post tanning process in order to achieve improved softness without affecting the requirements of upper leather
- Post tanning chemicals devoid of restricted substances like formaldehyde, heavy metals, APE's, Chlorinated phenols, etc.

Chemical	Reach Compliance level (mg/kg)		
Azo dyes	<10		COMPLIANC
Chromium VI	<3		COMPLIANC
Formaldehyde	<20	Chemical	Compliance level
Pentachlorophenol	<0.1		for children
Antimony	5		shoes (mg/kg)
Arsenic	0.2	pH of water	3.5 to 7.5
Cadmium	0.1	soluble	
Cobalt	4	Formaldehyde	ND
Copper	50	Soluble mineral	<50
Lead	0.8	tanning agent	
Mercury	0.02	Rest. Azo dyes	ND
Nickel	4	Cr(VI)	ND
Volatile organic	<500		
compounds			
Nonyl phenol & nonyl	Nil		

Optimization of tanning system

.	O	,			
 Chrome tanning – Control trial Aldehyde tanning – Experiment 1 Organic Tanning – Experiment 2 Aluminium silicate – Experiment 3 					
Shrinkage Temperature and pH of Water soluble for control and experimental leathers					
Tanning type	Shrinkage temperature (°C)	pH of water extract			
Full chrome	110 ± 2	4.51			
Aldehyde Tannage	83 ± 2	4.74			
Organic tannage	80 ± 2	4.44			
Aluminium silicate	85 ± 3	4.41			

PHYSICAL PROPERTIES				
Property	Full chrome	Aldehyde tanning	Organic tanning	Aluminium silicate
Tensile strength (N/mm ²)	20.15	21.17	20.415	23.63
Elongation at break (%)	58.72	43.50	47.5	52.92
Tear strength (N/mm)	55.08	55.72	50.23	51.16
Grain crack load (kg)	33.33	45.66	49.00	40
Distension (mm)	8.14	8.5	8.97	8.03
Colour fastness (grey scale value)	4	4	4	4
Light fastness (grey scale value)	4	4	4	4
Softness	6.03	4.39	3.91	5.31

Samples	Fullness	Roundness	Smoothness	Softness	Tightness
Full chrome	8	7	8	9	6
Aldehyde tanning	8	7	7	6	7
Organic tanning	8	7	7	6	7
Aluminium silicate tanning	8	8	7	8	7

Optimization of post tanning

Physical properties of the experimental leathers using various post					
tanning processes					
Property	Trial 1	Trial 2	Trial 3		
Tensile strength (N/mm ²)	23.63	23.63	22.08		
Elongation at break (%)	52.92	42.42	42.17		
Tear strength (N/mm)	51.16	61.26	52.59		
Grain crack load (kg)	40	36.66	46.66		
Distension (mm)	8.03	9.89	12.56		
Softness	5.31	5.01	5.23		

Converting Stingrag Skin into Leather

- Stingray fish belongs to cartilaginous family
- The skin is composed of several types of cartilage surrounded by a fibrous perichondrium
- Stingray fish skins have denticles instead of scales
- Calcified denticles, made by the calcification of Type II collagen, is the stiff material present in the skin of stingray
- Dark brown coloration is invariably found on the entire dorsal portion of the skin
- It is a form of pigmentation and it is not the natural colour, which is removed by applying suplhide paste

An investigation on chicken leg skin for the preparation of leather

- Around 200 million square feet of chicken leg skin is available in India per year
- Chicken legs are not utilized properly due to lack of technology and awareness among tanners and poultry producers
- CLRI has taken an R&D initiative to investigate the feasibility of turning Chicken Leg Skins to leather products
- Advantages:
 - Unique Grain Pattern
 - Reptile like Structure
 - Readily available in large numbers
 - Wealth from waste
- Technology developed for the conversion of chicken leg skins into finished leather
- Leather products from chicken leg leathers will have better market value

Development of Processes for the Tanning and Finishing of Emu Skins

- Emu's are flightless birds, native to Australia
- Emu birds were brought to India during 1996 and commercial farming started during the year 2000
- Large quantities of emu skins are available but inadequate knowledge about emu skins amongst tanners results in wastage of skins
- Skins coming out from the emu farms are not effectively utilized and are wasted
- Tanning and finishing processes for emu skins have been developed
- Improved properties of the emu leathers enables the conversion in to leather products

