TREATMENT OF TANNERY WASTEWATER WITHOUT SLUDGE GENERATION

Dr. G. Sekaran Chief Scientist& Cluster Chairman

Environmental Technology Division CSIR- Central Leather Research Institute Adyar, Chennai 29th January, 2015 CENTRAL LEATHER RESEARCH INSTITUTE

Segregation of highly polluting streams

Soak liquor and pickle liquorEvaporated in Solar Evaporation pans

Chrome liquor Recovery of Chromium (III) and reuse Wastewater discharged from industries are being treated through unit operations

Screening Equalisation Primary clarification, Secondary biological anaerobic treatment,

Aerobic biological treatment and

Tertiary treatment

- (I) coagulation-flocculation,
- (ii) sedimentation,
- (iii) sand filtration,
- (iv) carbon filtration,
- (v) ultrafiltration,
- (vi) nano filtration and
- (vii) Reverse Osmosis.

PRIMARY TREATMENT

Equalisation , Coagulation –Flocculation Sedimentation

CHEMICAL SLUDGE PRODUCTION

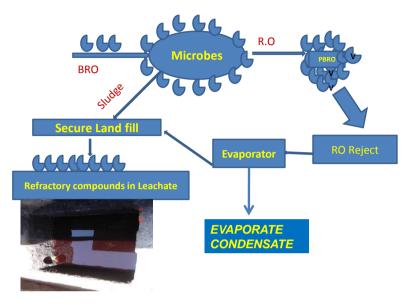
150-200 kg of sludge per ton of rawmaterial processed.

SECONDARY BIOLOGICAL TREATMENT OF TANNERY WASTEWATER

Many combinations of treatment Anaerobic biological treatment (UASB) and Aerobic biological treatment

Aerobic biological treatment (Activated Sludge Process)

Membrane Bioreactor (MBR)


Issues Identied:

- Huge sludge production
 Volatile organic compounds emission
 Excessive foam formation
 Residual COD or Biorefractory COD in the treated wastewater
 Fouling of membrane
- * Membrane life is shortened

Reduction potential $O_2 + 4H^+ + 4e^- -> 2H_2O(I)$ E0 = 1.23 V

Fate of Bio refractory organic (BRO) compounds in wastewater

Possible pathway for controlling the oxidation of organics in wastewater

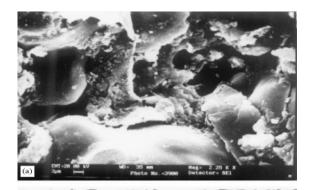
Hydroxyl radical may be considered as the oxidising agent with oxidation potential of $2.33 \mbox{V}$

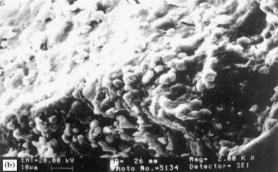
Compound	Symbol	Oxidation Potential	Relative Power of
		(V)	Chlorine
Fluorine	F ₂	3.06	2.25
Hydroxyl Radical	•ОН	2.80	2.05
Ozone	0 ₃	2.07	1.52
Hydrogen Peroxide	H ₂ O ₂	1.77	1.30
Permanganate	MnO ₄ -	1.67	1.23
Hypochlorous acid	HOCI	1.49	1.10
Chlorine	Cl ₂	1.36	1.10

Nano Porous Activated carbon has been proved to generate hydroxyl radicals using molecular oxygen Patentd technology of CLRI

	S.no	Parameters	Values
aracteristics of the nesoporous	1	S_{BET} (m ² /g)	438.9
	2	S_{mic} (m ² /g)	214.9
carbon	3	S _{meso} (m ² /g)	224.0
	4	Micropore volume, V _{micro} (cm ³ /g)	0.12
	5	Mesopore volume, V _{meso} (cm ³ /g)	0.27
	6	Total pore volume, V _{tot} (cm ³ /g)	0.39
	7	V _{meso} /V _{tot} (%)	69.23
_{т:} BET surface a;	8	Average pore diameter (A°)	35.28
	9	Production yield of carbon (%)	37.69
_c : micropore face area;	10	Carbon (%)	37.96
_{sso} : mesopores face area.	11	Hydrogen (%)	2.40
	12	Nitrogen (%)	0.50
	13	Moisture (%)	13.56
	14	Ash (%)	45.58
	15	Decolorizing power (mg/g)	69.32
	16	Point of zero charge (PZC)	7.1
	17		0.56

Characterie of the mesopord


S_{BET:} BET area; S_{mic}: mie


surface are

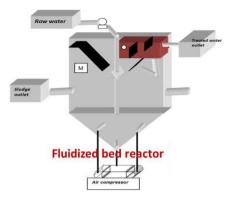
S_{meso}: mes surface are Immobilised bacteria in NPAC

Sekaran et al., Indian Journal of Chemical Technology, 11(1)(2004), 95-102

***LIFE OF THE** CATALYST IS MORE THAN 10 YEARS

CHEMO-AUTOTROPHIC ACTIVATED CARBON OXIDATION (CAACO) SYSTEM

FEATURES


- IMMOBILISATION OF BACILLUS SP.
- NANO POROUS SILICA-CARBON COMPOSITE MATRIX
- OXIDATIVE MINERALISATION OF ORGANICS
 IN WASTEWATER

Two Modes of treatment

Fluidised Immobilised Cell Carbon Oxidation (FICCO)

Packed Bed reactor known as Chemo Autotrophic Activated carbon Oxidation (CAACO)

MERITS OF CAACO TECHNOLOGY DEVELOPED BY CLRI FOR THE TREATMENT OF WASTEWATER

Indigenous technology

All the components of the technology are available in India

•Less land requirement

CAACO technology requires $0.5 \text{ m}^2/\text{m}^3$ as it involves only three unit operations against the conventional technology

Less electrical and mechanical equipments Only transfer pumps and an air blower for supplying air is required

.....contd.

- Less detention period (1 hr) CAACO technology requires 1hour residence time while the conventional technology needs 24-36 hours
- Less power consumption
 CAACO technology requires
 0.87 kwh/m³

Issues:

The refractory organic chemicals were not removed by CAACO system

Alicyclic compounds escape aerobic biological treament

The longer chain fatty acids appear in aerobic biological treatment

During endogeneous decay of bacterial cells a wide spectrum of compounds are released into solution, they contribute to residual COD

Accumulation of biomass leads to release of SMP

FENTON ACTIVATED CARBON CATALYTIC OXIDATION [FACCO] FOR THE TREATMENT OF REFRACTORY ORGANICS IN WASTEWATER

Advanced Oxidation Processes (AOP)

insitu generation of highly potent chemical oxidant hydroxyl radical (OH)

with a high electrochemical oxidation potential (2.8V versus normal hydrogen electrode) for the destruction of wide range of organic compounds in wastewater

FACCO technology in TNPL, Karur, Tamilnadu

Hydroxy radicals react with organics and break them down gradually into smaller fragments with higher bio degradation potential.

Sometimes (few occasions) dissolved organics are even completely degraded mainly into CO₂ and water.

Hydroxy radicals are generated by Fenton's reagent, a mixture of Ferrous iron and hydrogen peroxide

FACCO technology in CS Speciality chemicals Pvt Ltd., VAPI

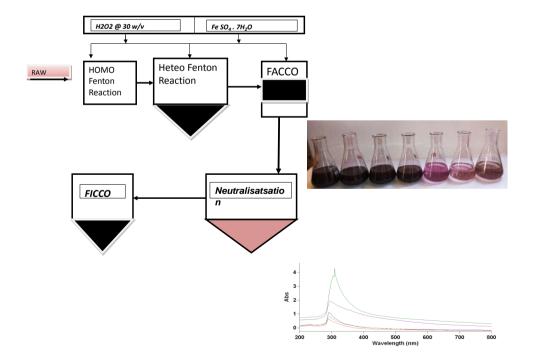
◆The large amount of ferric hydroxide sludge are generated during Fenton process, thus, causing an additional water pollution problem.

♦This may be regarded as the disadvantage of homogeneous Fenton's reagent .

★ Attempts have been made to avoid the additional water pollution due to metal ions by substituting the heterogeneous catalysts for homogeneous Fenton catalyst.

✤The combination of sorption with destruction of the sorbates in wastewater by catalytic processes such as Fenton Activated Carbon Catalytic Oxidation using immobilised Fe(II), Hydrogen peroxide and Nano Porous Activated Carbon.

Two Modes of configuration

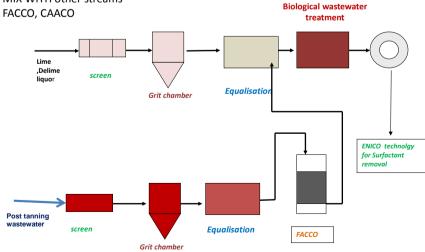

1.Fluidised Activated Carbon Fenton Oxidation

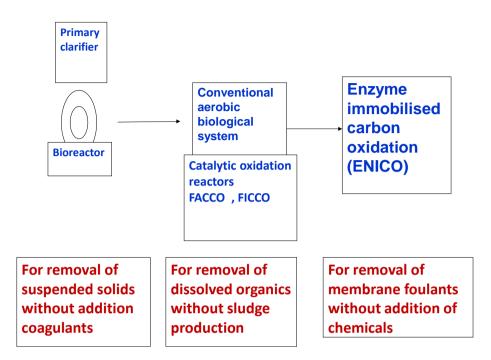
(Hetero Fenton Oxidation system)

2. Packed Bed Activated Carbon Fenton Oxidation

Fenton Activated Carbon Catalytic Oxidation (FACCO)

Parameters	Raw	Homo Fenton	Hetero Fenton	FACCO	FICCO
	wastewater	Oxidation	Oxidation H_2O_2	$H_2O_2 (@30\% w/v)$	24 HRS
		H_2O_2 (@30%w/v)	(@30%w/v)	FeSO ₄ .7H ₂ O-	
		0.2ml/L;	0.2ml/L;	0.1g/L	
		FeSO4.7H2O-	FeSO ₄ .7H ₂ O	HRT- 1hr	
		0.1g/L;	MAC,30g/L		
		HRT-1 hr	HRT:6 hrs		
pН	6.71	3.5	3.41	3.4	7.1
COD,mg/L	7060	4050	3520	1230	420
BOD ₅ mg/L	2100	1220	1020	450	107
NH _{3,} mg/L	272	143	116	105	67
Total Solids ,mg/L	12100	11121	11073	10833	9890
Total Dissolved Solids, mg/L	11871	10931	10901	10672	9763
Total Suspended Solids, mg/L	229	190	172	161	127


RECOMMENDED SCHEME FOR TANNERY WASTEWATER


Tanning industry

Segregation of Chrome and Pickle stream , Post tanning wastewater. Post tanning wastewater is treated through hetero fenton catalytic oxidation reactor, MIX WITH other streams FACCO. CAACO

CONVENTIONAL TECHNIQUES:

PRIMARY TREATMENT- ANAEROBIC-AEROBIC ISSUE: SLUDGE PRODUCTION , NOT MEETING THE STANDARD

CONCLUSIONS

Segregation of soak liquor and pickle liquor and treatment to reuse the salt

Treatment of post tanning wastewater using advanced oxidation process

Pre treatment of beamhouse wastewater

Combined biological treatment of treated post tanning wastewater and pretreated beamhouse wastewater to reduce sludge generation

